Open Colorings

José Antonio Corona García

joint work with Ulises Ariet Ramos García

PCCM UNAM-UMSNH, Morelia, México

January 2019

José Antonio Corona García (PCCM)

Definitions

Definition

Let X be a topological space. $K \subseteq [X]^2$ is open if the set $\{(x, y) \in X^2 : x, y \in K\}$ is open in X^2 . A partition $[X]^2 = K_0 \cup K_1$ such that K_0 is open is called open partition.

Definition

OGA(X) is the following sentence: For every open partition $[X]^2 = K_0 \cup K_1$, either:

 There exists an uncountable H ⊆ X such that [H]² ⊆ K₀ (0-homogeneous), or else

Definition

OGA(X) is the following sentence: For every open partition $[X]^2 = K_0 \cup K_1$, either:

- There exists an uncountable H ⊆ X such that [H]² ⊆ K₀ (0-homogeneous), or else
- **2** There is a family $\langle H_n : n \in \omega \rangle$ such that $X = \bigcup_{n \in \omega} H_n$ and $[H_n]^2 \subseteq K_1$ for every $n \in \omega$ (σ -1-homogeneous).

Definition

OGA(X) is the following sentence: For every open partition $[X]^2 = K_0 \cup K_1$, either:

- There exists an uncountable H ⊆ X such that [H]² ⊆ K₀ (0-homogeneous), or else
- **2** There is a family $\langle H_n : n \in \omega \rangle$ such that $X = \bigcup_{n \in \omega} H_n$ and $[H_n]^2 \subseteq K_1$ for every $n \in \omega$ (σ -1-homogeneous).

For $OGA^*(X)$ it means H has size \mathfrak{c} in the option 1.

Is it consitent with ZFC:

If X is a regular space with no uncountable discrete subspace and if $[X]^2 = K_0 \cup K_1$ is a given partition with K_0 open, then either there is an uncountable 0-homogeneous set, or else X is the union of countably many 1-homogeneous sets.

ZFC facts

Theorem (Todorčević)

 $OGA^*(\omega^{\omega})$ is true.

José Antonio Corona García (PCCM)

990

イロト イロト イヨト イヨト 二日

ZFC facts

Theorem (Todorčević)

 $OGA^*(\omega^{\omega})$ is true.

Lemma

Let X, Y be topological space such that Y is T_2 , and there is a continuos function f from X onto Y; then OGA(X) implies OGA(Y).

ZFC facts

Theorem (Todorčević)

 $OGA^*(\omega^{\omega})$ is true.

Lemma

Let X, Y be topological space such that Y is T_2 , and there is a continuos function f from X onto Y; then OGA(X) implies OGA(Y).

Definition

Let X be a topological space and A, $B \subseteq X$, we define the set

$$A \otimes B = \{\{x, y\} \in [X]^2 : x \in A \land y \in B \land x \neq y\}.$$

• $OGA^*(X)$ holds for every analytic set X.

590

< □ > < □ > < □ > < □ > < □ >

• $OGA^*(X)$ holds for every analytic set X.

2 OGA(ω_1) with the discrete topology is false.

990

• $OGA^*(X)$ holds for every analytic set X.

2 OGA(ω_1) with the discrete topology is false.

3 $OGA^*(S)$ is true.

500

• $OGA^*(X)$ holds for every analytic set X.

2 OGA(ω_1) with the discrete topology is false.

3 $OGA^*(\mathbb{S})$ is true.

Ouble arrow space.

If X is a Hausdorff strong Choquet space and Hereditary Lindelöf, then $OGA^*(X).$

996

◆□▶ ◆□▶ ◆三▶ ◆三▶

If X is a Hausdorff strong Choquet space and Hereditary Lindelöf, then $OGA^*(X)$.

X is strong Choquet if player II has a win strategy in the strong Choquet game.

Proof

Fix an open partition $[X]^2 = K_0 \cup K_1$ and assume that X can not be covered by countably many 1-homogeneous sets. Let σ be a winining strategy for II in the strong Choquet game G_X .

If X is a Hausdorff strong Choquet space and Hereditary Lindelöf, then $OGA^*(X)$.

X is strong Choquet if player II has a win strategy in the strong Choquet game.

Proof

Fix an open partition $[X]^2 = K_0 \cup K_1$ and assume that X can not be covered by countably many 1-homogeneous sets. Let σ be a winining strategy for II in the strong Choquet game G_X . We will define for $s \in \{0,1\}^{<\omega} U_s$ such that $\langle U_s : s \in \{0,1\}^{<\omega} \rangle$ is a Cantor schemme with the following properties:

• U_s is open for all $s \in \{0,1\}^{<\omega}$,

If X is a Hausdorff strong Choquet space and Hereditary Lindelöf, then $OGA^*(X)$.

X is strong Choquet if player II has a win strategy in the strong Choquet game.

Proof

Fix an open partition $[X]^2 = K_0 \cup K_1$ and assume that X can not be covered by countably many 1-homogeneous sets. Let σ be a winining strategy for II in the strong Choquet game G_X . We will define for $s \in \{0,1\}^{<\omega} U_s$ such that $\langle U_s : s \in \{0,1\}^{<\omega} \rangle$ is a Cantor schemme with the following properties:

- U_s is open for all $s \in \{0,1\}^{<\omega}$,
- **2** if $s, t \in \{0, 1\}^{<\omega}$ and $t \supseteq s$, then $U_s \supseteq U_t$,

If X is a Hausdorff strong Choquet space and Hereditary Lindelöf, then $OGA^*(X)$.

X is strong Choquet if player II has a win strategy in the strong Choquet game.

Proof

Fix an open partition $[X]^2 = K_0 \cup K_1$ and assume that X can not be covered by countably many 1-homogeneous sets. Let σ be a winining strategy for II in the strong Choquet game G_X . We will define for $s \in \{0,1\}^{<\omega} U_s$ such that $\langle U_s : s \in \{0,1\}^{<\omega} \rangle$ is a Cantor schemme with the following properties:

- U_s is open for all $s \in \{0,1\}^{<\omega}$,
- **2** if $s, t \in \{0,1\}^{<\omega}$ and $t \supseteq s$, then $U_s \supseteq U_t$,
- $\textbf{ if } s \in 2^{<\omega} \text{, then } U_{s^{\frown}0} \cap U_{s^{\frown}1} = \emptyset \text{, } U_{s^{\frown}0} \otimes U_{s^{\frown}1} \subseteq K_0 \text{, and }$

If X is a Hausdorff strong Choquet space and Hereditary Lindelöf, then $OGA^*(X)$.

X is strong Choquet if player II has a win strategy in the strong Choquet game.

Proof

Fix an open partition $[X]^2 = K_0 \cup K_1$ and assume that X can not be covered by countably many 1-homogeneous sets. Let σ be a winining strategy for II in the strong Choquet game G_X . We will define for $s \in \{0,1\}^{<\omega} U_s$ such that $\langle U_s : s \in \{0,1\}^{<\omega} \rangle$ is a Cantor schemme with the following properties:

- U_s is open for all $s \in \{0,1\}^{<\omega}$,
- 2 if $s, t \in \{0,1\}^{<\omega}$ and $t \supseteq s$, then $U_s \supseteq U_t$,
- $\textbf{ if } s \in 2^{<\omega} \text{, then } U_{s^{\frown}0} \cap U_{s^{\frown}1} = \emptyset \text{, } U_{s^{\frown}0} \otimes U_{s^{\frown}1} \subseteq K_0 \text{, and }$

Output U_s can not be covered by countably many 1-homogeneous sets, for every s ∈ {0,1}^{<ω}.

Claim:

Let U be an open set such that can not be covered by countably many 1-homogeneous set, then there exist $x_0, x_1 \in U$, and $U^0, U^1 \subseteq U$ disjoint such that:

$$\forall i \in \{0,1\} (x_i \in U^i),$$

2
$$U^0 \otimes U^1 \subseteq K_0$$
, and

∀i ∈ {0,1} Uⁱ can not be covered by countably many 1-homogeneous set.

Let $U_{\emptyset} = X$, use the previous claim, and find x_0 , x_1 , U^0 , U^1 acording to the conclusion of the claim.

Let $U_{\emptyset} = X$, use the previous claim, and find x_0 , x_1 , U^0 , U^1 acording to the conclusion of the claim.

Let $U_{\emptyset} = X$, use the previous claim, and find x_0 , x_1 , U^0 , U^1 acording to the conclusion of the claim.

Since X is strong Choquet $\bigcap_{n \in \omega} U_{f \upharpoonright n} = \bigcap_{n \in \omega} V_{f \upharpoonright n} \neq \emptyset$.

イロト イポト イヨト イヨ

Let $U_{\emptyset} = X$, use the previous claim, and find x_0 , x_1 , U^0 , U^1 acording to the conclusion of the claim.

Since X is strong Choquet $\bigcap_{n \in \omega} U_{f \upharpoonright n} = \bigcap_{n \in \omega} V_{f \upharpoonright n} \neq \emptyset$.

Let $F : 2^{\omega} \longrightarrow X$ be such that $F(f) \in \bigcap_{n \in \omega} U_{f \upharpoonright n}$, and $F''[2^{\omega}]$ is a 0-homogeneous set of size \mathfrak{c} .

イロト イポト イヨト イヨ

PFA part

Theorem (Todorčević)

PFA implies OGA.

590

PFA part

Theorem (Todorčević) PFA implies OGA.

Theorem

OGA is aquivalent with: OGA(X) holds for every subespace X of the Sorgenfrey line.

イロト イポト イヨト イヨ

Let $X \subset \mathbb{S}$ be uncountable, $[X]^2 = K_0 \cup K_1$ some open partion, and $\mathcal{B} = \{B_n : n \in \omega\}$ a countable basis of X acording to the usual topology.

500

イロト イポト イヨト イヨ

Let $X \subset \mathbb{S}$ be uncountable, $[X]^2 = K_0 \cup K_1$ some open partion, and $\mathcal{B} = \{B_n : n \in \omega\}$ a countable basis of X according to the usual topology. Define $A_n = \{x \in X : \{x\} \otimes B_n \subseteq K_0\}$ and $K'_0 = \bigcup \{A_n \otimes B_n : n \in \omega \land A_n \otimes B_n \subseteq K_0\}$.

Let $X \subset \mathbb{S}$ be uncountable, $[X]^2 = K_0 \cup K_1$ some open partion, and $\mathcal{B} = \{B_n : n \in \omega\}$ a countable basis of X according to the usual topology. Define $A_n = \{x \in X : \{x\} \otimes B_n \subseteq K_0\}$ and $K'_0 = \bigcup \{A_n \otimes B_n : n \in \omega \land A_n \otimes B_n \subseteq K_0\}$.

• Let τ_0 the topoloy generated by $\{A_n, B_n : n \in \omega\}$.

イロト イポト イヨト イヨ

Let $X \subset \mathbb{S}$ be uncountable, $[X]^2 = K_0 \cup K_1$ some open partion, and $\mathcal{B} = \{B_n : n \in \omega\}$ a countable basis of X according to the usual topology. Define $A_n = \{x \in X : \{x\} \otimes B_n \subseteq K_0\}$ and $K'_0 = \bigcup \{A_n \otimes B_n : n \in \omega \land A_n \otimes B_n \subseteq K_0\}$.

• Let τ_0 the topoloy generated by $\{A_n, B_n : n \in \omega\}$.

• Then $[X]^2 = K'_0 \cup K'_1$ is an open partition (acording to τ_0).

イロト (四) (三) (三) (二) (つ)

Let $X \subset \mathbb{S}$ be uncountable, $[X]^2 = K_0 \cup K_1$ some open partion, and $\mathcal{B} = \{B_n : n \in \omega\}$ a countable basis of X according to the usual topology. Define $A_n = \{x \in X : \{x\} \otimes B_n \subseteq K_0\}$ and $K'_0 = \bigcup \{A_n \otimes B_n : n \in \omega \land A_n \otimes B_n \subseteq K_0\}$.

• Let τ_0 the topoloy generated by $\{A_n, B_n : n \in \omega\}$.

• Then $[X]^2 = K'_0 \cup K'_1$ is an open partition (acording to τ_0).

• By OGA there are two options.

イロト (四) (三) (三) (二) (つ)

Let $X \subset \mathbb{S}$ be uncountable, $[X]^2 = K_0 \cup K_1$ some open partion, and $\mathcal{B} = \{B_n : n \in \omega\}$ a countable basis of X according to the usual topology. Define $A_n = \{x \in X : \{x\} \otimes B_n \subseteq K_0\}$ and $K'_0 = \bigcup \{A_n \otimes B_n : n \in \omega \land A_n \otimes B_n \subseteq K_0\}$.

• Let τ_0 the topoloy generated by $\{A_n, B_n : n \in \omega\}$.

- Then $[X]^2 = K'_0 \cup K'_1$ is an open partition (acording to τ_0).
- By OGA there are two options.
- There exists $H \subseteq X$ an uncountable set such that $[H]^2 \subseteq K'_0$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

Let $X \subset \mathbb{S}$ be uncountable, $[X]^2 = K_0 \cup K_1$ some open partion, and $\mathcal{B} = \{B_n : n \in \omega\}$ a countable basis of X according to the usual topology. Define $A_n = \{x \in X : \{x\} \otimes B_n \subseteq K_0\}$ and $K'_0 = \bigcup \{A_n \otimes B_n : n \in \omega \land A_n \otimes B_n \subseteq K_0\}$.

• Let τ_0 the topoloy generated by $\{A_n, B_n : n \in \omega\}$.

- Then $[X]^2 = K'_0 \cup K'_1$ is an open partition (acording to τ_0).
- By OGA there are two options.
- There exists $H \subseteq X$ an uncountable set such that $[H]^2 \subseteq K'_0$.

• Then
$$[H]^2 \subseteq K'_0 \subseteq K_0$$
.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

Suppose $X = \bigcup_{n \in \omega} X_n$ with $[X_n]^2 \cap K_0 = \emptyset$, then WLOG X_n does not have isolated points or X_n is a single point.

• Suposse $\{x, y\} \in K_0 \cap [X_k]^2$, for some $k \in \omega$.

イロト イポト イヨト イヨ

Suppose $X = \bigcup_{n \in \omega} X_n$ with $[X_n]^2 \cap K_0 = \emptyset$, then WLOG X_n does not have isolated points or X_n is a single point.

• Suposse $\{x, y\} \in K_0 \cap [X_k]^2$, for some $k \in \omega$.

•
$$[x, x + \epsilon)_X \otimes [y, y + \epsilon)_X \subseteq K_0$$

= nac

イロト イポト イヨト イヨ

Suppose $X = \bigcup_{n \in \omega} X_n$ with $[X_n]^2 \cap K_0 = \emptyset$, then WLOG X_n does not have isolated points or X_n is a single point.

• Suposse $\{x, y\} \in K_0 \cap [X_k]^2$, for some $k \in \omega$.

•
$$[x, x + \epsilon)_X \otimes [y, y + \epsilon)_X \subseteq K_0$$

•
$$\exists t \in B_{n_0} \subseteq [y, y + \epsilon)_X \cap X_k.$$

E 990

イロト イヨト イヨト イヨ

Suppose $X = \bigcup_{n \in \omega} X_n$ with $[X_n]^2 \cap K_0 = \emptyset$, then WLOG X_n does not have isolated points or X_n is a single point.

• Suposse $\{x, y\} \in K_0 \cap [X_k]^2$, for some $k \in \omega$.

•
$$[x, x + \epsilon)_X \otimes [y, y + \epsilon)_X \subseteq K_0$$

•
$$\exists t \in B_{n_0} \subseteq [y, y + \epsilon)_X \cap X_k$$
.

• $x \in A_{n_0}$, then $\{t, y\} \in K'_0 \cap [X_k]^2$ contradiction.

E 990

イロト イポト イヨト イヨ

990

イロト イポト イヨト イヨ

3

13/16

January 2019

Theorem (Todorčević, (PFA))

If X is a regular space, then one of the following holds for X:

José Antonio Corona García (PCCM)

Theorem (Todorčević, (PFA))

If X is a regular space, then one of the following holds for X:

X has an uncountable discrete subspace,

999

Theorem (Todorčević, (PFA))

If X is a regular space, then one of the following holds for X:

- X has an uncountable discrete subspace,
- 2 X is an hereditary Lindelöf space.

Image: A math a math

What about the L space

José Antonio Corona García (PCCM)

999

What about the L space

Question

Is there a regular L-space such that OGA(L)?

José Antonio Corona García (PCCM)

E January 2019 14 / 16

イロト イポト イヨト イヨ

590

Big questions

• (Todorčević) ¿Does OGA imply $2^{\aleph_0} = \aleph_2$?

José Antonio Corona García (PCCM)

January 2019 15 / 16

Big questions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

January 2019

15 / 16

• (Todorčević) ¿Does OGA imply $2^{\aleph_0} = \aleph_2$?

(Todorčević) is OGA consistent with $add(\mathcal{N}) = \aleph_1$?

José Antonio Corona García (PCCM)

Thank You!

José Antonio Corona García (PCCM)

996